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LIFT-CANC131LMTOilTEC133iIQUEIN L13EKRIZED

SUPERSONIC-WINGTHEORY

By Harold Mirels

A lift-caricellationtechnique is presented for determining
load distributions on thin wings at supersonic speeds. The tech-
nique retains certain features of the method recently introduced
by Theodore R. Goodman, while simplif@ng and generalizing others.

A general-expressionis derived for the load distribution over
a cancellationwing. This expression permits the determination of
lift distributions on wings that cannot be solvedby cancellation
techniques based on the superposition of conical flows. The bound-
ary conditions for either a subsonic leading edge or a subsonic
trailing edge canbe satisfied. Applications of the expression to
swept wings having curvilinear plan forms and to wings having
reentrant side edges are indicated.

INTRODUCTION

The method of lift cancellation for obtaining the lift dis-
tribution on thin wings at supersonic speeds was first suggested
in reference 1. The lift distribution on a given wing is deter-
mined by canceling excess lift, through the use of a “cancellation
wing,” on a related plan form having a known loading. This approach
has been appliedby several authors (for example, references 2 to 4).
The expressions provided in reference 1 are applicable for wings
that canbe generatedby the superposition of conical fields.

A procedure is presented in reference 5 for determining lift
on a more general class of plan forms than can be handled by coni-
cal superposition. The method utilizes a surface distribution of
doublets and an inversion by means of Abel’s integral equation and
is equivalent to a lift cancellation.

.
.
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2 NACA TN 2145

This report, prepared at the MACA Lewis laboratory, retains
certain features of reference 5 (that is, the use of a surface dis-
tribution of doublets and an inversion by means of Abel’s integral
equation), whereas other features are simplified and generalized.
The simplification consists in eliminating steps in the procedure
for obtaining lift distributions. The generalization consists in
determining a solution that canbe made to satisfy the boundary
conditions for either a subsonic leading edge or a subsonic trailing
edge (Kutta condition). The method of reference 5 melds only the
Kutta solution. The lift-cancellationtechnique developed herein
is ill.ustratedby several examples.

In a concurrent iwestigation (reference 6), source distribu-
tions and integral-equationformulations have been applied to obtain
the loading on a special series of cancellation wings. Reference 7
employs some of these cancellationwings for ‘thedetermination of
lift and moments on swept wings. ,

THEORY

The usual assumptions of an inviscid fluid and small perturba-
tions are made. The velocity field consists of the free-stream
velocity U (_ in the positive x-direction) plus the perturba-
tion velocities u, v, and w. The wing boundary conditions are
specified in the z = O plane.

The local lift coefficient ACP may be expressed in te&ns

Of Au. l!hatiS,

%-- 2(~-@
A~=~= 2Au=—

u u
(1)

(All symbols used in this repo&t are defined i? a~endix A.) Inas-
much as the local lift coefficient is directly proportional to Au,
Au will be referred to as “lift” in later developments.

Lift-Cancellation Method

The lift distributiorion a given wing is to be determinedly
canceling excess lift on a related wing with a kmwn loading. The
method is illustrated in figure 1. The wing for which the lift
distribution is desired is shown in figure l(a) The solution can
be expressed as the two-dimensionalwing (fig. l(b)) minus a can-
collation wing (fig. l(c)). The loading in region I of the

“
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cancellationwing equals the loading in the correspondingregion of
the two-dimensionalwing and the upwash w in region II of the
cancellationwing is zero. The loading of the two-dimensionalwing
minus that of the cancellationwing Satisfies the boundary conditions
for the flow about the given wing and @ the desired solution.

The fundamental problem in the lift-cancellationmethod is then
to determine the lift in region II of a cancell.ationwing subject
to the condition w = O in this region and with the assumption of
a known loading in region 1. Solution of this problem is presented
in the following sections.

Ikrivation of Lift-CancellationEquations

The lift distribution in region II will be expressed in terms
of quantities in region I.

Consider the cancellationwing sh~ in figure 2. The portion
of the leading ed&e to the left of the origin coincides with a Mach
line. The portion of the leading edge to the right
(designated r = rl(s)) is shown as a supersonic edge, although no
restrictions as to a subsonic or supersonic edge are imposed. (A
plan-form edge is subsonic or supersonic depending on whether the
component of the free stream normal to the edge is subsonic or
supersonic.) The line designated r = r2(s) separates region I
and region II and is assumed to be subsonically inclined to the
free stream at all points. ‘@is line corresponds to a plan-form
edge of the wing for which the lift distribution is desired.

.
General solution for load distribution on cancellationwing. -

The upwash field in the z = O plane (due to an arbitrary distribu-
tion of vorticity Au and Av) maybe written, from reference 8,

13211~Y-Yo)AV + (X-Xo)Au] ax. ~.
w=—

2fl
T ~x-xo)%’(Y-Yo)q3/2

(2)

The symbol ~ designates the finite part of an infinite integal,
as defined in reference 9. Application of the finite-part concept
to linearized supersonic-wingtheory and the evaluation of the finite
part of an infinite inte&ral are discussed in references 8 and 10.
For the present, it will suffice to state the fundamental definition
of the finite part of an integral with a 3/2-power singularity,
namely,

,’

I

.
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nx nx

.

13ya transformation to the Mach

equation (2)

w

x = ~ (s+r)

Y = * (s-r)

elemental

becomes

coordinates of reference

r .$ (X-py)

s =* (X+py)

1

2b.rasarea = —
~2 J

11,

(5)

Upon substitution of the limits of integration, as indicated in
figure 2,

,

(6) “

—— ..

I
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Integratingby parts, noting that’ AT= O at r. = rl(so), and

recalling the definition of the finite part (equation (3)) yield

I nr

J
—

1 A~ dro
~__

2 q
rl(so)

, (7)

Thus

fls m

(8)

Similarly, reversing the order of integration (with appropriate
changes in limits of integration),inte~ating by parts, and then “
returning to the original order of integration es~blish the identity

>s
r

r

(9)

.—
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right side of equations
now be written as

(8) and (9) are
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identical. Equation (6)

.

points in region II, w .= O and equation (10) becomes

or

I /--

where

Equation
G(r,so).

Thus,

o=

.

I P

~

AP (irO
G(r,so) =

-
rl(so)

(llb) is an integral equation for the
The solution (appendixB) is

G(r,so) = O

(llb)

(12)

(13)

.

..—
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or

.

.

.

.,

~r2 (so)
Afi dro

~
(14)

r,(s-) 0
AU

The right side of equation (14) will be considered known. Equa-
tion (14) is then an integral equation for A~ll. The solution
(appendix B) is

Equation (15) indicates that the doublet strength in region II,
_lY AV119 can be obtained by a line integration along so = s

in region I. The geometria interpretation of the various ter& in
equation (15) is shown in figure 3.

It can be shown, by expanding WI in a Taylorts series about

r = r2(s), that equation (15) yields a continuous solution

(AT= = 01) at r = r2(s). (A discontinuity in Aq implies a

lifting line (reference 12) and is unrealistic.)

The lift distribution in region II can be expressed as

or, from equation (M), .

L

\r2(s)

(16)

— . ..— .. ---- ..—.—.—A...____ .... .____ ____.__. _ -—-— —.—— ——. .— .——
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Differentiationyields (See appendix C.)

J
r2(s)

*; w Au dr’
=

?c r (s, (r-ro)Jm-
1

Equation (17a) is *he desired e~ression for the lift distribution
in region II in terms of quantities in’region I.

Consider A~l to consist of two components, AU1l’ and

‘“II”‘ ‘here ‘%’ ad ‘%1” are the first and second terms

on the right side of equation (17a), respectively. Investigation
of the integrals indicates that at r = r2(s)j AuII‘ = AU1;

whereas AU1l”, in general, has a U-order

When region II is to the right of region
inte~ation for. AuII is conducted along the

may be written as

~s2(r)

Singularity.

I (fig. 3(b)), the
line r. =rand

Au,, @s2(r) J Au dso
=

m (s-s.)~- -
sl(r)

J’
s2(r)

ds2(r)
1- ~ (PA~+Av1)dso

2p7r~-
sl(r) -

(in)

.- ——- .



. NACA TN 2145 9

Discussion of equations (17a) and (17b). - In the paragraph
preceding equation (2),the line r = r2(s) was described as sub-

sonically inclined at all points to the free stream. This condition
is necessary so that the inner integral in equation (I-1a)(that is,
G(r,so)) canbe equated to zero for all points in region II. If

this restriction on r = r2(s) is not satisfied, the development

beyond equation (ha) becomes invalid. The derivation of cancella-
tion equations when r = r2(s) is supersonic was not undertaken

because such problems canbe solved more simplyby other methods.

In regard to the boundary conditions, it has been assumed that
AU1 is specified. Equations (17a) and (17b), however, indicate

that a knowledge of AV1 is also required in order to obtain a

solution for AU1l. Two possibilities exist, as illustrated in

figure 4. In the first case (fig. 4(a)), region I is upstream of
region II (along the line r = r2(s)) ~d AV1 is uniquely defined

by the specified AU1 according to the relation

“J
x..

AV1 =-$ “Au1 ~

S(Y)

(18a)

The integration is conducted along lines of constant y. In the
second case (fig. 4(b)), region II is upstream of region I (along
the line r = r2(s)) and the expression.for AV1 in region I

.(for y ~ O) is

Equation (18b) indicates that a knowledge of AU1l is required in

order to find AV1. But AV1 must be known (equation (17a)) before

Auu can be found. Thusj the solution for AuII from a specified

AuI is not unique for the configuration of figure 4(b) and an

additional boundary condition must be imposed. The line r = r2(s),

however, corresponds to a plan-form edge of the airfoil whose load

.-—. ----
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.

distribution is desired. The situation indicated in figure 4(b)
occurs when r = r2(s) corresponds to a subsonic trailing edge.

The additional condition to be imposed is therefore the Kutta con- ‘
M.tion. In terms of the cancellation wing, this con~tion requires
that the perturbation velocities be continuous in crossing r = r2(s).

Solution for Au1l satisfying Kutta condition at r =.r2(s). -

It will nowbe shown that when the Kutta condition is imposed at
r = r2(s), the appropriate AV1 distribution is such as to make

—
the second integral in equation (17a) identically zero; that is,

J
r2(s)

mu -Av

rl(s)
~2(J-ro~l/2 ‘o = 0

~A~
or, inasmuch as ~Au1-Av1 =M~,

UJ. o

‘r
2(s)

~@I

~ ‘o

rl(s)
[r2(s)-rJ1/2 = 0

This concept and its proof follow from a suggestion of H. S. Ribner’
of the NACA Lewis laboratory.

Thur, from equation (7), (12), and (13),

for all points (r,s) in region II. Therefore,

l:-=-[,s,s

(19)

.

(20)

.—.—...
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Upon taking the limit as r approaches r2(s), equation (20)

4

L

,

.

*

becomes

11

(21)

Huwever, 8A!p1/&o must be continuous’in the vicinity of r2(s).

(The perturbation velocities on the basic wing can be discontinuous
only along Mach lines or along plan-fomn edges. Inasmuch as
r= r2(s) is neither of these cases, all derivatives of Ah must

be continuous in the vicinity of r = r2(s).) When the Kutta con-

dition is ,@posed, ~A~II&o is therefore also continuous (and

bounded) in the neighborhood of r = r2(s). Then, using a mean
VdU8 for ~f@#ro>

lim
r4r2(s)

1“

.
.

= o (22) “

Therefore

which was to be proved.

(23)

. - ..—-. . . . ... . .. ———--—--—--——————— — ---—— -— ——— ——-— ‘-- ”-- - -



,

12

r =

for

for

NACA TN 2145

The solution for AU1l that satisfies the Kutta condition at

r2(s) is then, from equations (17a) and (23),

J

r2(s)

AU1l m AU1 dro
= (24a)

7( (r-ro)~-o
rl(s)

the wing of figure 3(a). Similarly,

J

s2(r)

Au,, - AuI dso
=

x
s (r) ~ - ‘24’)
1

the wing of figure 3(b).

An alternate derivation of equations (24a) and (24b) (appen-
D) indicates that only solutions satisfying the Kutta confition

will result from the integral equation formulations of reference 5. .

SideWash in region II. - An expression for Av~ canbe obtained

by differentiating equation (15) with respect to y. The result is

s2(s)

AV1- =
?Jq AV1 dro

m (r-ro)4JW +
rl(s)

Similarly, for region II to the right of region I, ,

.

.

—
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.

J
sz(r)

,V1l AFm AV1 dso )
=

Y(
(s-s.)/j-

sl(r)

+

When the Kutta condition applies, these equations become,
respectively,

r 1“
AV1l - 2(s)Av &c

=
X

(r-ro)~-
rl(s)

.

and

It shouldbe noted that when r = r2(s) corresponds to a subsonic

trailing edge, AV1, as well as AVD, is not generally lmown.

The preceding expressions are therefore primarily useful for those
problems where r = r2(s) corresponds to a subsonic leading edge.

APPLICATIOIVS

The loading in region II of a cancellationwing is givenby
the line integrals of equation (17a) or (ii%). When the Kutta
condition is imposed at a subsonic trailing edge, the expressions
reduce to equations (24a) and (24b). These equations canbe used
to fin~ the load distribution on a large variety of wings that
cannot be solved by cancellation techniques based on conical

—.-—— .—. .—---- ......—_ ---- ~—. . .. — _ —. . . .. ——— .—_____ —
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superposition. Wings wi%n curvilinear plan forms or arbitrary
caniberare examples. In each case, however, the solution for the
related wing must be k.

The equations are applied in several illustrative examples.
Only the solution associated with the cancellation wing is con-
sidered. The complete solution consists in the loading of the
related wing minus the loading of the cancellation wing.

Leading-Edge and Side-Edge Cancellations

In these cases, the lift to be canceled is upstream or to the
side of the plan form for which the loading is desired (figs..5
and 6). .

Tip region of swept wing. - The loading in the region influ-

1
enced by the side edge (IIa and IIb of fig. 5) of a swept wing
hwd.ng a subsonic leading and a supersonic trailing edge can be
obtained by canceling excess ltit on a triangular wing. The Kutta

I condition is ap@ied across the portion of r = r2(s) influencing

region ~b. The lift to be canceled in region I is (reference 13z
equation (23))

(25)

where H and 0 are constants defined in appendix A. The doublet
distribution in region Ia, again from reference 13, is

A9 =
Ia

H~-=~ 02(s+r)2-(s-r)2

from which

The sidewash distribution in rO@On Ib (that iS} Avlb) could be

found by an integration of the type indicated in equation (16b). A
lmuwledge of AV1b, however, is unnecessary in the present problem

because the Kutta cOtitiOn is applied fOr region ~b.

.,

.

.— .—-—— --—
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The loading in region IIa is obtained by substituting equa-

tions (25) and (26),
which melds

with r replaced by ro, into equation (17a),

H62~-
Auma ,=

Yc f

r2(s)

(s+ro) dro’
r

J (r-ro)~ r2(s)-ro~e2(s+r& )2-(s-ro)2
q(s)

For region ~b, the Kutta condition applies and

JF ‘2(S)H82 rr2(s) (s+ro) dro
A~lb =

Yt
r (s, (r-ro) ‘2(s+ro)2-(s-ro)2
1

(28)

Equations (27) and (28) reduce to elliptic integrals of the first,
second, and third kind upon transforming the variable of integra-
tion from r. to (O.,according to the relation

[ I~ (1-e)s+a#02‘o = l+’

where

a2= (l+e)r2(s)-(1-e)8

Equations (27) and (28) may thenbe written

.

(29)

— -—.. ..-—... _ -——— —.--—..
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(30)

and

where

k=
r

g a’
4se

a = (l+@),r-(1-e)s

a’n=-—
a

q = (l+@) rl(s)-(l-e)s

a2 = (1+0)r2(s)-(1-O)s

(31)

Reentrant side edge. - A plan form has a reentrant edge if a
line of constant y intersects the plan form at’more than two
points.

The load distribution in
side ed& is to be determined

the region influenced by.the reentrant
for the wing of figure 6. The side
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edge is first, for simplicity, the straight line r = K2S, which
is a subsonic trailing edge across which the Kutta condition is
applied. The side edge then alternately becomes a subsonic leading
and a subsonic trailing edge. The load distribution in region I is

2a.Issimply the Ackeret value AuI = —p> and AV1 = O. Regions IIa,
a

IIb, and IIc are considered separately.

Region IIa.

2aUFrom equation (24a) with AU1 =~.

=

or, in x,y-coordinates

‘“IIa
.% ta-l

w

X+p
p m2x-y

Region IIb.

A knowledge of Avlb is required. From

Avlb =$

.

(32a)

equation (18b)y

—

(32b)

(33)

.- —, .-. —— .—.—— ———.
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The load”distributionin region IIb is then, reCalliW that AV1a x 0}

~r2(s)

AuIIb =

J

~~)

fi

-s

r

2aU &o

P(r-ro)~-

ps
r

2(s)

Region IIC.

Because the Kutta condition is applied,

=4UU

i

rz(s)+s
4Au

IIC
~ tan-l

r-rz(s)

P
CD

f

t

1

1 t 1
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Trailing-Edge Cancellation

The calculation of lift distributions on swept wings having subsonic trailing edges
.

requires cancellationwings of the type shown in figure 7. These wings cancel that part
of the lift of the basic triangular wing that is downstream of the trailing edge of the
swept wing (references3, 4, 6, and 7). The lift is specified in region I. The lift in
regions II and III is to be determined subject to the conditions that w = O and that the
Kutta condition applies at r = ??l(s) and r = r2(s).

An

The wing of figure 7(a) differs from the previously discussed cases in that two unknown
regions (II and III) are continuously interacting. A special treatment is required in order
to obtain the loading in regions II and III. (See, for example, referenoe 6.) Approximate
solutions canbe o~tained, however, using equations (24a) and (24b). For example, if the
loadat (r,s) in region II is desired, first assume that AU1ll is known. Then

1

I

I

1297

‘UII

expression for AuIII is, by integrating along lines of constant r. (fig.

r
I

i=m
‘UIII = n

~sl(ro)

AuI dso

1“

(s-s.)fJ’-
s2(ro)

(36)

7(a)), ‘

1



~ approximate expression for AuIII is then

J
Sl(ro)

4=77. Au de
‘UIII % ~

(S-SO)J- “
s2(ro)

(37)

Equation (36), which may now be mitten in terms of AUT by substitutingequation (37’)

‘or ‘“III) becomes

~ ~r~(s) r pfqko) 7
AuII z

{1

m dro

!J

B
AuI dso

n
(r-ro)~vo. X

1s (r ) ‘s-so)~-oMcr
20

L

+

lr2(s) , ●

AuX dro
(38)

(r-ro)~-
rl(s)

The first term on the right side of equation (38) approximatesthe contributionof
region III to the loating in region II. This term, as indicated in reference 6. is E!
negligible for the commofiy enc&ntered AuI dist~ibutions (correspondingto s~eady lift, ~

P dyl (x)> 0.5.
roll, or pitch) and For those cases, equation (38) simplifiesto 8

~
.

2A
m

I

I
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I

.i

I

1297
t

J,U1l X d=m “ AU1 &?.

Y’t
r (s) ‘r-ro)l-
1

The Kutta

tion (39)

When

condition at r = r2(s) is

can be reduced to canonical

satisfied by both equations (38) and (39). Equa-

form by the substitution indicated in equation (29).

region I has a partly supersonic leading edge (fig. 7(b)), it is possible to
write exact expressions for the linearized load distribution in regions II and III. For
example, the load at point (r,s) of figure 7(b) is

i
AU1l u

A/r-rZ(s)

It

.
I

*

A cancellation
boundary conditions

\J dro .

(r-ro)~-
0

pr2(s)

.J
sl(ro)

m A% dso

1

+
? (s-so)tJ-

s3(ro)

“7
(40)

Successive Cancellations

wing may induce lift that itself must be canceled in order to satisfy
completely. Thus, in figure 8, the cancellation of lift in region I N

P
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indnces lift in region I*. The cancellation of lift in region 11
induces lift in region 1“, and so forth. Each of thesemncella-
tions is handled as previously described. ‘l?hese.computationare
very tedious when lift is induced upstream of a subsonic leading
edge (for example, region It of fig. 8), inasmuch as a knowledge
of the sidewash (Av1,), as well as of the lift distribution

(Au1,), is needed in order to continue the cancellationprocess.

Numerical metho@s are generally required.

Successive cancellations are discussed more extensively in
references 3 and 4.

SUMMARY OF A.MAIZSISJUIDAPF%ICATIOI?S

A general expression was determined for the lift distribution
over a cancellationwing. The expression is valid when the plan-
form boundary (on cancellationwing) separating the region of zero
upwash from the region for which the lift is specified is eve~here
subsonically inclined to the free stream. This expression permits
the determination of lift distributions on wings that cannot be
solved by cancellation techniques based on conical superposition.
The boundary conditions for either the flow about a subsonic leading
edge or a subsonic trailing edge can be satisfied.

@ lift cancellation technique was illustrated for swept wings
ham curvilinear plan forms. Leading-edge aad trailing-edge
cancellationswere considered. In addition, the loading in a region
influencedby a reentrant side edge was found.

Zewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, Januav 16, 1950.

.

. .
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APPENDIX A

sYMaoLS
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.

a

al

a2

ACP

c

Cr

E(@,k)

The following symbols pre used in this report:

F(@,k)

o

G(r,so)

H=

K

k

(l+O)r-(1-f3)s

(l+e)r~(s)-(1-e)s

(l+@)r2(s)-(1-e)s

.
~-pT

local lift coefficient, -
~

conf3tant

root chord of swept wing

elliptic integral of second kind,

elliptic inte~al of first kind,

F(@,k) =

Jo 4*

function,of r and so definedby equation (12)

2aU

.(#j@)
slope of plan-form edge in r,s-coordinates, ar/ds

modulus of elliptic integrals

●

� ✎✎ ✎✎✎ ✎ ✎�� ✎✎✝ �✎�✍��✎� �✍ �� ✍ �✎✎ �❞ � �✎✍� ��✎�✎✎ � �
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M

m

n

P

q,

r,ro

S,so
1

u

U,v,w

Au

Av

X?xo

Y)Y~

Z,zo}

a

B

6

8

II(@,n,k)

NACA TN 2145

Mach number

slope of plan-form edge in x,y-coordinately dY/dx ,

parameter of elliptic integral of third kind

local static pressure

Mach coordinate system (equation (4))

free-stream velocity

perturbation velocities in x-, y-, and z-directions,
respectively

q-u~ (proportionalto local lift)

‘T-VB

Cartesian coordinate system

angle of attack

semivertex angle of triangular wing

elliptic integral of third kind,

J +(l+n6)02) (l-k ~. )(l-@o )
o

**
.

.

— — ..—
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P density “

tiresof integration

amplitude of elliptic integrals

perturbation velocity potential

doublet strength, ~-~

inte~ation variable

Regions:

I region on cancellation wing for which loading is
specified

Ia,Ib, . . . subdivisions of region I

II region on cancellation wing for which w = O

IIa,IIb, . . . subdivisions of region II

III additional region on cancellation wing for which
w= o

Special designations:

r= rl(s) r as function of s along plan-form boundary 1

s = sl(r) s as.function of r along plan-form boundary 1

Y = Yl(x) y = function of x along plan-form bounda~ 1

x= q(y) x - function of y along plan-form boundary 1

r= rz(s) r as function of s along plan-formboundary 2

●

s = s2(r) s as function of r along plan-form boundary 2

and so forth.
.

.

..... . . . .———.--— .— . __— —. . —
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Subscripts:

1,2,3 refers’to plan-form botmdaries 1, 2, and 3, respectively

1,11 refers to regions I and II, respectively

B bottom surface of z = O plane

T top surfac’e of z = O plane

o variable of integration

.

,{

——
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SOLUTION OF INTEGRAL EQUATIONS

Consider the following irite~al equation (in the notation of
the appendix in reference 5), where the function f(x) is assumed
known and the function u(~) is to be determined:

I Px

After an integration by parts, equation (Bl) maybe written

(Bl)

(B2)

Equation (B2) is now an integral equation of the Abel type. The “
continuous solution for u(~) is (reference 14)

J ‘+f(x ax
u(z) = - & (B3)

a (Z-X)12

evaluated at z = g. This result is presented in reference 5.

Equation (llb) correspond to equation (Bl) with U(~) = G(r,so)

and f(x) = O. The solution for G(r,so), according to equa-

tion (B3), is then

G(r,so) = O (13)

— . . . .. . . .. . . ——- -—— ..— -. --— ---— ---- .-——— .-—-— .. ———



28

Equation (14) corresponds to eqtition (Bl) with

E=ro a = q(so)

J
rz(so)

x=r f(x) =’-
* 32

rl(so)

u(g) =

The solution for

NACA TN 2145

.

A% according to equation (B3) is then’

After reversing the

z

f-f

r2(so)

1 “(33? MP1 tie,
(B4)

z“ Jr m
T2(SO) ‘-r rl(so)

order of integration and integrating,

J$=@ ‘2(s0)WI ‘o -
(B5)

1-c
(z-ro)~-o

rl(so)

Equation (B5), evaluated at z = r and So ‘=s, yields

JAm,=i=m ‘2(s)m~ ho
Jr

(15)
(r-ro)~’o

q(s)

The derivation of equation (I-5)is similar to that for equa-
tion (16) of reference 5.

,.

.

I

.

—. .
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G
N
l-l

The

is to be

mlmimx

DIFFERENTIATION TO

c

0131’AINAuH “

differentiation indicated in equation (16)

conducted.

Inasmuch

—

)+&
f

- ‘2(S)-” ‘(16)
A% &o

X
r (s) ‘r-ro)~’~1

rr2(s)dr2(s)
1-~

A% dro
+

w/=mJr ( ) (HO)~-O
1s

as API is a function

f

r2(s)

A% dro

r (8) ‘r-ro)~-1

of r. and

rq(s)
s,

Afi dro

J
=-

(r-ro)2A/-
rl(s)

(cl) ,

. (C2a)

.

..— .--—— -—— _.— .———



(AqI)ro= r2(S)

(r-ro)~-.

EACA TN 2145

{f

o
~ ar2(s) A% &r.

-.—
3/2 +ro~l~(s ) 2 * (i-ro)[r2(s)-ro]

r (s) .
,1

*2(S)

}

(A%)ro = r~(s) drl(s)
—-
ds

[r-rl(s~~- ‘

However, (A~)ro = rl(s) = O and, by integration by parts,

.

L

lro1

(c2b)

so that equation (C2b) can be written as

+

.

“

. .

—-— ._— ---

.

.
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JrM (r-ro)~ r2(s)-ro

dr2(s)

ds

L

A% –

(C3)

Upon substituting equatiofi (C2a) and (C3) into equation (Cl) and
inte~ating by parts those integrals containing A~l, equation (Cl)
finally reduces to

AuII =

1

.

J m-
m ‘2(S)AuI dro

x
(r-ro)A/--

rl(s)

&z(s)
.— rrz(s)

I (pAu1-Av1) drJ.

ds

2p3rd=Jrl(s) ~r2(s)-ro
(17a)

.. —.—.—. —— ———-———- . ... .— ---- —- —.— .— ———.
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APPENDIX D

ALTERNATE DERIVATION OF SOLUTION SATISFYING

KUTTA CONDITION AT r = r2(s)

The inte&g’alequation formulation in terms of AP (equa-
tion (14)) resulted in a solution that was continuous in ACp
(equation (15)) but discontinuous, in general, in the derivative
aAq
x

= Au (equation (17a)) at r = r2(s). In order to obtain a

solution continuous in Au, an inte~al equation may be formulated
that is similar to equation (14), but in terms of Au rather than
A~. The inversion shown in appendix B should result in a solution
that is continuous in Au but discontinuous in the derivatives of
Auatr= r2(s).

.

Consider equation (10) for the w distribution in the
= O plane. This equation will be differentiated with respect to ..

= using a technique introduced in reference 15 (equations (1) to
(3)). The expression for w at any point (r,s) is, from
equation (10),

.

where T is the area abc in figure 9(a). The wing is moved
upstream a ~s~nce dX (fig. 9(b)), keep- the coordinate system
fixed in space. The expression for the upwash at (r,s) now
becomes

[ J( aAq

)
A~+@dx drodso

aw~=_’& .
‘+s 8X

T (s-so)3/2(r-ro)3/2 + .

p]

.

(D2)

—. —.
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The second term on the right side of equation (D2) is zero because
A9 = O along the leading edge. Subtraction of equation (Dl) from “
equation (D2) then yields

.

For points in region II of a c-celktion w@) ~ = 0= Thus,
for the wing of figure 3(a),

(D#,)

This eauation is the same as equation (ha) except that Au reDlaces
A~. Tie inversion by Abel’s integral equation, for AU1l in terms

.

of AuX then gives (from equation (1.5))

‘UII =

Inasmuch as the
in terms of Au and
tion, only solutions
therein.

7

J
~(s)

Pm A? dro
(24a) ‘

S
(r-ro)~-

rl(s)

integral equations of reference 5 are formulated
are inverted by means of Abelrs integral equa-
satis~ng the Kutta condition will result
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(a) Given wing.

I0: ‘\ y
0 \

0
/ I

0 x
W=’=au 0

\

0 w== I
AU=AUT

W==au
/

/ Au=Au1
/’

Au=Au1.
0“

0 /
0 /

.0

(b) Two-dimensional wing.

Y

/

x

W=o w=?

. Au= ? AU=AU1

II I

(c) Cancellation wing. “T

Figure 1. - Superposition to obtain lift on given wing by
canceling lift on two-dimensional wing. (Given wing equals
tvfo+iimensionalwing minus cancellation wing.).
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w=?

(r~s) 11 Au=Au1

W=o
Au= ? h-r=r2(s)

Figure 2. - Typical cancellation wing. ~
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.

s)

(a) Region I intersectedby right forward Mach line from (r,s).

‘\
S,so

(b) Region I intersectedby left forward Mach line from (r,s). -

Figure 3. - Geometric interpretationof terms in equations (17a) and
(17b).
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II X-=2 (Y)

/
H

r,ro

/

,
(a) Region I upstream of region II (along ra2(s)).

/’
&
r,ro

(Y)

/ Y9yo

\

/ ‘(-’\\ =1(Y)\
x=-py \

X,x. \ x“

II

/ (:

/ ‘Jso

y =constant

Y)

I

H X=2(Y)

ra2(s) .

(b) Region II upstream o,fregi~

-

I (along r=r2(s)).

Figure 4. - Possible relations between regions I and II in regard
to determination of AV1.
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Figure 5. - Cancellation for
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obtaining loading in tip region of swept wing
supersonic.trailing edges,
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Figure 6. - Cancellation for obtaining loading in region influenced
edge.
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, Y*YO

A f// \
b’ X,xo ‘% ‘+

r,ro S)so ,

(a) Regions II and III continuously interacting.

A
,YJYO

0

A’
r,ro ‘k

Yxo ‘*SO
III

/ I \
{

ra3(s)

—L=%(r)

(b)

Figure 7. -

‘\
\

.

/
/

/

e,s]

{

-L

/ r=r2(s)

~

rq, (s)

s=s2(r) S=sl(r)

Regions II and III not continuously interacting. w

\
\

\

Typical cancellation wings for canceling lift downstream of
subsonic trailing edge of swept wings.
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Figure 8. - Successive cancellations.
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